Abstract
Abstract
Nanostructured thin films are widely investigated for application in multifunctional devices thanks to their peculiar optoelectronic properties. In this work anatase TiO2 nanoparticles (average diameter 10 nm) synthesised by a green aqueous sol-gel route are exploited to fabricate optically active electrodes for pseudocapacitive-electrochromic devices. In our approach, highly transparent and homogeneous thin films having a good electronic coupling between nanoparticles are prepared. These electrodes present a spongy-like nanostructure in which the dimension of native nanoparticles is preserved, resulting in a huge surface area. Cyclic voltammetry studies reveal that there are significant contributions to the total stored charge from both intercalation capacitance and pseudocapacitance, with a remarkable 50% of the total charge deriving from this second effect. Fast and reversible colouration occurs, with an optical modulation of ∼60% in the range of 315–1660 nm, and a colouration efficiency of 25.1 cm2 C−1 at 550 nm. This combination of pseudocapacitance and electrochromism makes the sol-gel derived titania thin films promising candidates for multifunctional ‘smart windows’.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献