Experimental observations on metal-like carrier transport and Mott hopping conduction behaviours in boron-doped Si nanocrystal multilayers

Author:

Chen Jiaming,Li DongkeORCID,Sun Teng,Han Junnan,Zhang YangyiORCID,Li Wei,Xu JunORCID,Chen Kunji

Abstract

Abstract Studies on the carrier transport characteristics of semiconductor nanomaterials are the important and interesting issues which are helpful for developing the next generation of optoelectronic devices. In this work, we fabricate B-doped Si nanocrystals/SiO2 multilayers by plasma enhanced chemical vapor deposition with subsequent high temperature annealing. The electronic transport behaviors are studied via Hall measurements within a wide temperature range (30–660 K). It is found that when the temperature is above 300 K, all the B-doped Si nanocrystals with the size near 4.0 nm exhibit the semiconductor-like conduction characteristics, while the conduction of Si nanocrystals with large size near 7.0 nm transforms from semiconductor-like to metal-like at high B-doping ratios. The critical carrier concentration of conduction transition can reach as high as 2.2 × 1020 cm−3, which is significantly higher than that of bulk counterpart and may be even higher for the smaller Si nanocrystals. Meanwhile, the Mott variable-range hopping dominates the carrier transport when the temperature is below 100 K. The localization radius of carriers can be regulated by the B-doping ratios and Si NCs size, which is contributed to the metallic insulator transition.

Funder

National Key R&D program of China

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Natural Science Foundation of Jiangsu Higher Education Institutions

Publisher

IOP Publishing

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3