Defining ferroelectric characteristics with reversible piezoresponse: PUND switching spectroscopy PFM characterization

Author:

Alikin DenisORCID,Safina Violetta,Abramov Alexander,Slautin BorisORCID,Shur Vladimir,Pavlenko Anatoly,Kholkin Andrei

Abstract

Abstract Detecting ferroelectricity at micro- and nanoscales is crucial for advanced nanomaterials and materials with complicated topography. Switching spectroscopy piezoresponse force microscopy (SSPFM), which involves measuring piezoelectric hysteresis loops via a scanning probe microscopy tip, is a widely accepted approach to characterize polarization reversal at the local scale and confirm ferroelectricity. However, the local hysteresis loops acquired through this method often exhibit unpredictable shapes, a phenomenon often attributed to the influence of parasitic factors such as electrostatic forces and current flow. Our research has uncovered that the deviation in hysteresis loop shapes can be caused by spontaneous backswitching occurring after polarization reversal. Moreover, we’ve determined that the extent of this effect can be exacerbated when employing inappropriate SSPFM waveform parameters, including duration, frequency, and AC voltage amplitude. Notably, the conventional ‘pulse-mode’ SSPFM method has been found to intensify spontaneous backswitching. In response to these challenges, we have redesigned SSPFM approach by introducing the positive up-negative down (PUND) method within the ‘step-mode’ SSPFM. This modification allows for effective probing of local piezoelectric hysteresis loops in ferroelectrics with reversible piezoresponse while removing undesirable electrostatic contribution. This advancement extends the applicability of the technique to a diverse range of ferroelectrics, including semiconductor ferroelectrics and relaxors, promising a more reliable and accurate characterization of their properties.

Funder

Ministry of Science and Higher Education of the Russian Federation (Ural Federal University Program of Development within the Priority-2030 Program

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3