Abstract
Abstract
The purpose of the current work is to determine how a magnetic field, nonlinear thermal radiation, a heat source or sink, a Soret, and activation energy affect bio-convective nanofluid flow across a Riga plate in terms of heat transfer qualities. The major goal of this investigation is to enhance the heat transfer rate. The flow problem is demonstrated in the form of a collection of PDEs. Since the generated governing differential equations are nonlinear, we use a suitable similarity transformation to change them from partial to ODEs. The bvp4c package in MATLAB is used to numerically solve the streamlined mathematical framework. The impacts of numerous parameters on temperature, velocity, concentration, and motile microorganisms profiles are examined through graphs. Whereas, skin friction and Nusselt number are illustrated using tables. As the magnetic parameter values are raised, the velocity profile is seen to decrease and the temperature curve exhibits the opposite tendency. Additionally, the heat transfer rate expands as the nonlinear radiation heat factor is enhanced. Moreover, the outcomes in this investigation are more consistent and precise than in earlier ones.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献