Abstract
Abstract
Nanostructured forms of diamond have been recently considered for use in a variety of medical devices due to their unusual biocompatibility, corrosion resistance, hardness, wear resistance, and electrical properties. This review considers several routes for the synthesis of nanostructured diamond, including chemical vapor deposition, hot filament chemical vapor deposition, microwave plasma-enhanced chemical vapor deposition, radio frequency plasma-enhanced chemical vapor deposition, and detonation synthesis. The properties of nanostructured diamond relevant to medical applications are described, including biocompatibility, surface modification, and cell attachment properties. The use of nanostructured diamond for bone cell interactions, stem cell interactions, imaging applications, gene therapy applications, and drug delivery applications is described. The results from recent studies indicate that medical devices containing nanostructured diamond can provide improved functionality over existing materials for the diagnosis and treatment of various medical conditions.
Funder
Science and Engineering Research Board
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献