Abstract
Abstract
In this research, we report an enhanced sensing response ethanol gas sensing device based on a ternary nanocomposite of molybdenum diselenide-zinc oxide heterojunctions decorated rGO (MoSe2/ZnO/rGO) at room temperature. The sensing performance of the ternary nanocomposite sensing device has been analysed for various concentrations of ethanol gas (1–500 ppm). The gas-sensing results have revealed that for 500 ppm ethanol gas concentration, the sensing device has exhibited an enhanced response value
(
R
g
/
R
a
)
of 50.2. Significantly, the sensing device has displayed a quick response and recovery time of 6.2 and 12.9 s respectively. In addition to this, the sensing device has shown a great prospect for long-term detection of ethanol gas (45 days). The sensing device has demonstrated the ability to detect ethanol at remarkably low concentrations of 1 ppm. The enhanced sensing performance of the ternary nanocomposite sensing device has highlighted the effective synergistic effect between MoSe2 nanosheets, ZnO nanorods, and rGO nanosheets. This has been attributed to the formation of two heterojunctions in the ternary nanocomposite sensor: a p-n heterojunction between MoSe2 and ZnO and a p-p heterojunction between MoSe2 and rGO. The analysis of the results has suggested that the proposed MoSe2/ZnO/rGO nanocomposite sensing device could be considered a promising candidate for the real-time detection of ethanol gas.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献