The effect of near-surface electron trapping layer on the acetone sensing performance of black TiO2 capped with ZnO

Author:

Feng YangchunORCID,Yang WangyangORCID,Li Yufang,Shen Honglie

Abstract

Abstract In recent years, high-performance acetone gas sensors have attracted great attention for their potential in noninvasive blood glucose monitoring. In this work, black TiO2 (B-TiO2) was introduced as an electron trapping layer between TiO2 and ZnO to form TiO2@B-TiO2@ZnO core–shell nanoparticles, through a simple and safe method. The acetone sensing performance of TiO2@B-TiO2@ZnO varied with the thickness of ZnO. Because of the electron trapping effect of the introduced B-TiO2 layer, the best performing sample exhibited a low optimal operating temperature of 275 °C and a high response of 49.25–50 ppm acetone. In addition, a low detection limit of 170 ppb was obtained. The pretty selectivity of the sample was also been proved. The mechanism of enhanced acetone response was explained by the energy band-based model of TiO2@B-TiO2@ZnO core–shell nanoparticle and depletion layer theory.

Funder

Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions

Postgraduate Research & Practice Innovation Program of Jiangsu Province

the special fund of Jiangsu province for the transformation of scientific and technological achievements

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3