Lattice thermal conductivity of embedded nanoparticle composites: the role of particle size distribution

Author:

Maranets TheodoreORCID,Cui HaoranORCID,Wang YanORCID

Abstract

Abstract Nanoparticles embedded within a crystalline solid serve as impurity phonon scattering centers that reduce lattice thermal conductivity, a desirable result for thermoelectric applications. Most studies of thermal transport in nanoparticle-laden composite materials have assumed the nanoparticles to possess a single size. If there is a distribution of nanoparticle sizes, how is thermal conductivity affected? Moreover, is there a best nanoparticle size distribution to minimize thermal conductivity? In this work, we study the thermal conductivity of nanoparticle-laden composites through a molecular dynamics approach which naturally captures phonon scattering processes more rigorously than previously used analytical theories. From thermal transport simulations of a systematic variety of nanoparticle configurations, we empirically formulate how nanoparticle size distribution, particle number density, and volume fraction affect the lattice thermal conductivity. We find at volume fractions below 10%, the particle number density is by far the most impactful factor on thermal conductivity and at fractions above 10%, the effect of the size distribution and number density is minimal compared to the volume fraction. In fact, upon comparisons of configurations with the same particle number density and volume fractions, the lattice thermal conductivity of a single nanoparticle size can be lower than that of a size distribution which contradicts intuitions that a single size would attenuate phonon transport less than a spectrum of sizes. The random alloy, which can be considered as a single size configuration of maximum particle number density where the nanoparticle size is equal to the lattice constant, is the most performant in thermal conductivity reduction at volume fractions below 10%. We conclude that nanoparticle size distribution only plays a minor role in affecting lattice thermal conductivity with the particle number density and volume fraction being the more significant factors that should be considered in fabrication of nanoparticle-laden composites for potential improved thermoelectric performance.

Funder

U.S. Nuclear Regulatory Commission

National Science Foundation

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3