Abstract
Abstract
Random multiple light scattering in disordered photonics leads to interesting and unexpected physical phenomena. Here, we demonstrate two types of partially disordered nano-porous metallic oxide materials: disordered grating nano-pores and two-dimensional disordered nano-tubes, which are produced just with one-step anodic oxidation. The relations among the processing parameters, morphology properties and multiple scattering characteristics are investigated. The surface morphology controllability can be achieved by simply changing the processing direct voltages, leading to different scattering properties. The probabilistic model of partially disordered nano-porous metallic oxide is constructed according to the nano-structure characteristics of oxide, and the rigorous coupled wave analysis is utilized for optical field simulation to exhibit the theoretical multiple scattering properties. Futhermore, the experimental scattering fields are measured and are analysed by statistical method. The research focuses on the disorder caused by one-step oxidation, which is distinct from previous studies that introducing disorder into periodic materials, and would open up new prospects for sensing, bionics and structural color.
Funder
Natural Science Foundation of Tianjin City
National Natural Science Foundation of China
“the Fundamental Research Funds for the Central Universities”, Nankai University
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献