Magnetically-assembled multifunctional magnetic-plasmonic SERS substrate for low-concentration analyte detection

Author:

Amonkar Shilpa R,Cherukulappurath SudhirORCID

Abstract

Abstract Multifunctional particles with combined magnetic and optical properties are promising materials for applications such as sensing and detection of analytes, and contrast agents for imaging techniques such as MRI, and photocatalysis. While the magnetic property allows for non-contact manipulation of the nanoparticles, optical properties can be harnessed for such sensing applications. We present the synthesis and large-scale assembly of inter-layered magnetic-plasmonic nanoparticles with graphene oxide (GO) spacer (Fe3O4@GO@Ag). The multifunctional composite particles were prepared using simple chemical methods and had an average size of 225 nm. The prepared samples were characterized using different techniques including powder XRD, FT-IR, Raman scattering, SEM, and TEM imaging. By using an external magnetic field, it is possible to form an assembly of these multifunctional particles on a large scale. Due to the chain-like formation in the presence of a magnetic field, such assemblies are good substrates for surface-enhanced Raman scattering (SERS). Here, we demonstrate the application of these magnetically-assembled particles for the detection of very low concentrations of analyte molecules (4-mercaptopyridine) using SERS. These multifunctional composite particles are good candidates for potential applications involving chemical detection, photocatalytic reactions, optoelectronic devices, and photothermal effects.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Reference76 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3