Three-dimensional Nanoporous Cu-Doped Ni Coating as Bifunctional Electrocatalyst for Hydrazine Sensing and Hydrogen Evolution Reaction

Author:

Wang Yajing,Xie TaipingORCID,Zhu Quanxi,Fu Junjie,Peng Yuan,Wang JiankangORCID,Liu Songli

Abstract

Abstract Developing a cost-effective and efficient bifunctional electrocatalyst with simple synthesis strategy for hydrazine sensing and H evolution reaction (HER) is of utmost importance. Herein, a three-dimensional porous Cu-doped metallic Ni coating on Ti mesh (Ni(Cu) coating/TM) was successfully electrodeposited by a facile electrochemical method. Electrochemical etching of the electrodeposited Ni(Cu) coating with metallic Ni and Cu mixed phase on a Ti mesh contributed to the formation of a three-dimensional porous Cu-doped metallic Ni coating. Owing to the large specific surface area and enhanced electroconductivity caused by the porous structure and Cu doping, respectively, the developed Ni(Cu) coating/TM exhibited superior hydrazine sensing performance and electrocatalytic activity toward hydrogen evolution reaction (HER). The Ni(Cu) coating/TM electrode presented a good sensitivity of 3909 μA mM−1 cm−2 and two relatively broad linear ranges from 0.004 mM to 2.915 mM and from 2.915 mM to 5.691 mM as well as a low detection limit of 1.90 μM. In addition, the Ni(Cu) coating/TM required a relatively low HER overpotential of 140 mV to reach −10 mA cm−2 and exhibited robust durability in alkaline solution. The excellent hydrazine electrooxidation and HER performance guarantee its promising application in hydrazine detection and energy conversion.

Funder

Science and Technology Research Program of Chongqing Municipal Education Commission

National Natural Science Foundation of China

Chongqing Basic and Frontier Research Program

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3