Interfacial friction of vdW heterostructures affected by in-plane strain

Author:

Zhou Xuanling,Chen PeijianORCID,Xu Rong-Guang,Zhang Cun,Zhang Jiazhen

Abstract

Abstract Interfacial properties of van der Waals (vdW) heterostructures dominate the durability and function of their booming practical and potential applications such as opoelectronic devices, superconductors and even pandemics research. However, the strain engineering modulates of interlayer friction of vdW heterostructures consisting of two distinct materials are still unclear, which hinders the applications of vdW heterostructures, as well as the design of solid lubricant and robust superlubricity. In the present paper, a molecular model between a hexagonal graphene flake and a rectangular SLMoS2 sheet is established, and the influence of biaxial and uniaxial strain on interlayer friction is explored by molecular dynamics. It is found that the interlayer friction is insensitive to applied strains. Strong robustness of superlubricity between distinct layers is owed to the structure’s intrinsic incommensurate characteristics and the existence of Moiré pattern. In engineering practice, it is of potential importance to introduce two distinct 2D materials at the sliding contact interface to reduce the interfacial friction of the contact pair and serve as ideal solid lubricants. Our research provides a further basis to explore the nanotribology and strain engineering of 2D materials and vdW heterostructures.

Funder

National Natural Science Foundation of China

Key research and development program of Xuzhou

the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures

the opening project of State Key Laboratory of Solid Lubrication

the Fundamental Research Funds for the Central Universities

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3