Combined effects of nanoparticle size, and nanoparticle and surfactant concentrations on the evaporative kinetics, dried morphologies, and plasmonic property of gold colloidal dispersion droplets

Author:

Zaibudeen A W,Bandyopadhyay RanjiniORCID

Abstract

Abstract Understanding the combined influence of various parameters on the formation and morphologies of distinct solute deposit patterns obtained after droplet drying is essential for developing numerous real-time applications. In this work, gold nanoparticle (Au-NP) dispersion droplets are dried on a hydrophilic substrate and the coupled effects of nanoparticle size, and nanoparticle and surfactant (CTAB) concentrations on the evaporative kinetics and evaporation-induced nanoparticle assemblies in dried deposit patterns are studied using optical and scanning electron microscopy. The distinct stages of drying of a cetyltrimethylammonium bromide (CTAB) stabilized Au-NP dispersion droplet, such as the evolutions of pinning, depinning, and a depletion region, change drastically for a combined increase of CTAB concentration and nanoparticle size for different nanoparticle concentrations. Accordingly, the dried pattern is composed of distinct regions of closely bound ordered Au-NP assemblies coexisting with loosely bound disordered packings of Au-NPs that form inside and outside the coffee stain pattern. The multilayers of densely packed and hexagonally arranged Au-NPs at the outer coffee stain edge are tested for surface-enhanced Raman scattering activity against a standard probe molecule (Rhodamine B—RhB). The least detection limit of RhB at the outer coffee stain edge improves by three orders of magnitude with increasing nanoparticle concentrations and nanoparticle sizes. The present study demonstrates that the drying kinetics, distinct dried deposit morphologies, and the limit of plasmonic activity of the deposited Au-NPs can be fine-tuned via a combined variation of CTAB concentration, nanoparticle size, and nanoparticle concentration in the Au-NP dispersion droplet.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3