Abstract
Abstract
Fe3+ and 2-methylimidazole were selected to prepare tumor microenvironment targeted and regulated multifunctional drug carrier Fe-MOFs. The fact that Doxorubicin hydrochloride (DOX·HCl) release climbed 70% from 25% upon regulating the pH from 7.4 to 5.8 proved the pH responsive drug release of Fe-MOFs. Hydroxyl radicals (·OH) analysis proved that Fe-MOFs only generated hydroxyl radicals at pH 5.8, and dissolved oxygen performance showed the O2 was produced during the process, which was expected to regulate hypoxia in tumor cells to increase anticancer effect. Cell viability experiments proved the selectivity of Fe-MOFs and the excellent performance of synergy therapy of DOX·HCl and hydroxyl radicals. In vivo magnetic resonance imaging experiments demonstrated excellent performance of positive images. All experiments showed that Fe-MOFs can be used for image-guided collaborative treatment to improve treatment efficiency and reduce side effects.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献