Chemical fabrication, structural characterization and photocatalytic water splitting application of Sr-doped SnO2 nanoparticles

Author:

Jain Sapan K,Pandit Nayeem Ahmad,Fazil Mohd,Ali Syed Asim,Ahmed Jahangeer,Alshehri Saad M,Mao Yuanbing,Ahmad TokeerORCID

Abstract

Abstract Semiconductor photocatalysis has gained considerable attention in recent years due to their enabling nature to convert solar energy into fuels of renewable hydrocarbon. However, many of them suffer from some drawbacks like the inability to visible light irradiation and wide band gaps. Herein, we have synthesized monophasic strontium (Sr) doped SnO2 nanoparticles by a cost-effective and environmental friendly hydrothermal method. As-synthesized nanoparticles showed rutile crystalline structure with irregular and rough cubical shape and no other elemental impurities. Sr-doped SnO2 nanoparticles show a constant decrease in bandgap with increasing dopant concentration, which is estimated for excellent photocatalytic activity. The photocatalytic water splitting of as-prepared Sr-doped SnO2 nanoparticles for H2 generation shows a large influence of the increasing dopant concentration related to the narrowing bandgap on H2 generation rate. Hence, the tunable bandgap with adjusted dopant concentration indicates that band gap tuning through doping for produced nanostructures may open up a new opportunities for photocatalytic and other optoelectronic applications.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3