Frictional resistance and delamination mechanisms in 2D tungsten diselenide revealed by multi-scale scratch and in-situ observations

Author:

Paul Tanaji,Dolmetsch Tyler,Lou LihuaORCID,Agarwal ArvindORCID

Abstract

Abstract Friction phenomena in two-dimensional (2D) materials are conventionally studied at atomic length scales in a few layers using low-load techniques. However, the advancement of 2D materials for semiconductor and electronic applications requires an understanding of friction and delamination at a few micrometers length scale and hundreds of layers. To bridge this gap, the present study investigates frictional resistance and delamination mechanisms in 2D tungsten diselenide (WSe2) at 10 µm length and 100–500 nm depths using an integrated atomic force microscopy (AFM), high-load nanoscratch, and in-situ scanning electron microscopic (SEM) observations. AFM revealed a heterogenous distribution of frictional resistance in a single WSe2 layer originating from surface ripples, with the mean increasing from 8.7 to 79.1 nN as the imposed force increased from 20 to 80 nN. High-load in-situ nano-scratch tests delineated the role of the individual layers in the mechanism of multi-layer delamination under an SEM. Delamination during scratch consists of stick-slip motion with friction force increasing in each successive slip, manifested as increasing slope of lateral force curves with scratch depth from 10.9 to 13.0 (× 103) Nm−1. Delamination is followed by cyclic fracture of WSe2 layers where the puckering effect results in adherence of layers to the nanoscratch probe, increasing the local maximum of lateral force from 89.3 to 205.6 µN. This establishment of the interconnectedness between friction in single-layer and delamination at hundreds of layers harbors the potential for utilizing these materials in semiconductor devices with reduced energy losses and enhanced performance.

Funder

National Science Foundation

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3