Nanometer-scaled landscape of polymer: fullerene blends mapped with visible s-SNOM

Author:

Lee Ya-RongORCID,Huang Cheng-Chia,Huang Wen-Yu,Chen Chin-TiORCID,Huang Ping-Tsung,Wang Juen-KaiORCID

Abstract

Abstract Bulk heterojunction is one key concept leading to breakthrough in organic photovoltaics. The active layer is expectantly formed of distinct morphologies that carry out their respective roles in photovoltaic performance. The morphology-performance relationship however remains stymied, because unequivocal morphology at the nanoscale is not available. We used scattering-type scanning near-field optical microscopy operating with a visible light source (visible s-SNOM) to disclose the nanomorphology of P3HT:PCBM and pBCN:PCBM blends. Donor and acceptor domain as well as intermixed phase were identified and their intertwined distributions were mapped. We proposed energy landscapes of the BHJ active layer to shed light on the roles played by these morphologies in charge separation, transport and recombination. This study shows that visible s-SNOM is capable of profiling the morphological backdrop pertaining to the operation of high performance organic solar cells.

Funder

Ministry of Science and Technology, Taiwan

Academia Sinica

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3