Second harmonic generation and simplified bond hyperpolarizability model analyses on the intermixing of Si/SiGe stacked multilayers for gate-all-around structure

Author:

Chen Wei-TingORCID,Yen Ting-Yu,Hung Yang-Hao,Huang Yu-Hsiang,Chiu Shang-Jui,Lo Kuang-YaoORCID

Abstract

Abstract Si/SiGe stacked multilayers are key elements in fabrication of gate-all-around (GAA) structures and improvement of electrical properties, with the evolution of the Si/SiGe interfaces playing a crucial role. In this work, a model is developed based on the simplified bond hyperpolarizability model (SBHM) to analysis the anisotropic reflective second harmonic generation (Ani-RSHG) on a three-period stacked Si/Si1−x Ge x multilayer, which builds on Si(100) diamond structures. The C 4v symmetry of the Si(100) structure enables the second harmonic generation (SHG) contribution from the bonds to be simplified and the effective hyperpolarizabilities of the interfacial and bulk sources to be obtained. The effective interface dipolar and bulk quadrupolar SHG hyperpolarizabilities in the Si1−x Ge x sample with various Ge concentration profiles are modeled by interpreting the concentration of a component element as the probability of the element occupying an atomic site. On the basis of the developed model, the Ani-RSHG spectra of the as-grown samples with various Ge ratios for each layer and the samples annealed at 850 °C and 950 °C are analyzed to inspect the change in Ge distribution and its gradient in depth. The ani-RSHG analysis on as-grown samples showed difference in Ge distribution in samples with the multi Si/SiGe structure, which is not well observed in synchrotron x-ray diffraction (XRD) spectra. For the annealed samples, the response to changes in Ge concentration and its gradient in depth reveal the Si/Si1−x Ge x interface intermixing. Results of high-angle annular dark-field scanning transmission electron microscopy and energy dispersive x-ray spectroscopy agree well with the Ani-RSHG with SBHM findings. Compared with the Raman and synchrotron XRD spectra, the Ani-RSHG with SBHM simulation result demonstrates much better response to changes in compositions of the Si/Si1−x Ge x stacked multilayered structures, verifying the potential for characterizing the concentration distribution in stacked multilayered thin films for GAA structures.

Funder

Ministry of Science and Technology, Taiwan

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Reference39 articles.

1. 3nm GAA Technology featuring multi-bridge-channel FET for low power and high performance applications;Bae,2018

2. Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET;Loubet,2017

3. Review of nanosheet metrology opportunities for technology readiness;Breton;J. Micro/Nanopatterning, Mater. Metrol.,2022

4. Gate-all-around strained Si 0.4 Ge 0.6 nanosheet PMOS on strain relaxed buffer for high performance low power logic application;Agrawal,2020

5. Development of SiGe indentation process control for gate-all-around FET technology enablement;Schmidt;IEEE Trans. Semicond. Manuf.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3