Nano-cutting mechanism of ion implantation-modified SiC: reducing subsurface damage expansion and abrasive wear

Author:

Kang QiangORCID,Kong XianguangORCID,Chang Jiantao,Fang XudongORCID,Kang Chengwei,Wu Chen,Li Changsheng,Maeda Ryutaro,Jiang Zhuangde

Abstract

Abstract This study utilized ion implantation to modify the material properties of silicon carbide (SiC) to mitigate subsurface damage during SiC machining. The paper analyzed the mechanism of hydrogen ion implantation on the machining performance of SiC at the atomic scale. A molecular dynamics model of nanoscale cutting of an ion-implanted SiC workpiece using a non-rigid regular tetrakaidecahedral diamond abrasive grain was established. The study investigated the effects of ion implantation on crystal structure phase transformation, dislocation nucleation, and defect structure evolution. Results showed ion implantation modification decreased the extension depth of amorphous structures in the subsurface layer, thereby enhancing the surface and subsurface integrity of the SiC workpiece. Additionally, dislocation extension length and volume within the lattice structure were lower in the ion-implanted workpiece compared to non-implanted ones. Phase transformation, compressive pressure, and cutting stress of the lattice in the shear region per unit volume were lower in the ion-implanted workpiece than the non-implanted one. Taking the diamond abrasive grain as the research subject, the mechanism of grain wear under ion implantation was explored. Grain expansion, compression, and atomic volumetric strain wear rate were higher in the non-implanted workpiece versus implanted ones. Under shear extrusion of the SiC workpiece, dangling bonds of atoms in the diamond grain were unstable, resulting in graphitization of the diamond structure at elevated temperatures. This study established a solid theoretical and practical foundation for realizing non-destructive machining at the atomic scale, encompassing both theoretical principles and practical applications.

Funder

National Natural Science Foundation of China

Key Industrial Chain Core Technology Research Project in Xi'an

Innovation Capability Support Program of Shaanxi Province

Shaanxi Postdoctoral Science Foundation

Postdoctoral Fellowship Program of CPSF

China Postdoctoral Science Foundation

Natural Science Basic Research Program of Shaanxi

Fundamental Research Funds for the Central Universities

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3