Abstract
Abstract
Carbon nanotube (CNT) materials show large degradation in tensile strength when they are exposed in chemically active environments due to the loss of inter-tube bonding. Here, we report the suppression of such degradation by chemical vapor infiltration of amorphous carbon into CNT films. The amorphous carbon generated by the thermal decomposition of the gaseous hydrocarbon of acetylene is firmly bonded on the CNT sidewalls and intersections. Based on the improved inter-tube bonding and restriction of inter-tube sliding, the tensile strength of the film is improved to be 3 times of the original level. More importantly, the bonding is so strong and stable that the high tensile strength remains with little loss even in harsh wet environments such as boiling alcoholic, acidic, alkaline solutions and seawater. Such harsh environments-tolerant properties, which were rarely observed before, could open new windows for the CNT/C composite material to be applied from functional devices to structural components under extreme corrosive conditions.
Funder
National Natural Science Foundation of China
National Key R&D Program of China
Innovation Program of Shanghai Municipal Education Commission
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献