Ag–N–C single atom catalyst with resistance for Ag loss in acetylene hydrochlorination

Author:

Liu Li,Lu Fangjie,Yin Xue,Yao Yuqi,Zhu MingyuanORCID,Dai Bin

Abstract

Abstract Ag–N–C catalyst was synthesized by the calcination process with AgNO3 as precursors, active carbon as support, and melamine as an N source. Series of characterizations showed that Ag was transferred into AgCl during the active phase by HCl, and pyridinic structure in the support was bonded with Ag components. Then, Ag–N–C single atom catalyst (SAC) was obtained by washing Ag–N–C with acid, aberration-correction high-angle-annular-dark-field scanning transmission electron microscopy showed that Ag presented in single atoms form, and Ag coordinated with the nitrogen atom in the support. Ag loss rate for Ag–N–C SAC was only 0.09% after running 10 h in acetylene hydrochlorination process, which was much smaller than Ag–N–C (57%), indicating that the presence of the Ag–N bond could be inhibiting Ag species loss.

Funder

Taishan Scholars Program of Shandong Province

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3