Synthesizing high performance LNMO cathode materials with porous structure by manipulating reynolds number in a microreactor

Author:

Liu Tongli,Deng Hongjie,He Fa,Wu Yuqing,Wu Zhenguo,Wan FangORCID,Chen Ting,Xu Wenhua,Song YangORCID,Guo XiaodongORCID

Abstract

Abstract The demand for Lithium-ion batteries (LIBs) has significantly grown in the last decade due to their extensive use electric vehicles. To further advance the commercialization of LIBs for various applications, there is a pressing need to develop electrode materials with enhanced performance. The porous microsphere morphology LiNi x Mn2–x O4 (LNMO) is considered to be an effective material with both high energy density and excellent rate performance. Nevertheless, LNMO synthesis technology still has problem such as long reaction time, high energy consumption and environmental pollution. Herein, LNMO microsphere was successfully synthesized with short precursors reaction time (18 s) at 40 °C without using chelating agent by microreaction technology combined solid-state lithiation. The optimized LNMO cathode shows microsphere (∼8 μm) morphology stacked by nano primary particles, with abundant mesoporous and fully exposed low-energy plane. The electrochemical analysis indicates that the optimized LNMO cathode demonstrates 97.33% capacity retention even after 200 cycles at 1C. Additionally, the material shows a highly satisfactory discharge capacity of 92.3 mAh·g−1 at 10C. Overall, microreaction technology is anticipated to offer a novel approach in the synthesis of LNMO cathode materials with excellent performance.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Sichuan Science and Technology Program

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3