Ultrafast high-temperature sintering and thermoelectric properties of n-doped Mg2Si

Author:

Boldrini StefanoORCID,Ferrario AlbertoORCID,Fasolin StefanoORCID,Miozzo AlviseORCID,Barison SimonaORCID

Abstract

Abstract Ultrafast high-temperature sintering (UHS) is a recently proposed technique able to synthesize and sinter dense materials within seconds. Although UHS has already proved its effectivity with a large set of materials, spanning from refractory ceramics to complex metal alloys, any application to thermoelectric materials is today still lacking. Mg2Si is a well-established thermoelectric material. It is based on wide available non-critical raw materials, it is non-toxic, lightweight and it expresses its best thermoelectric performances in the intermediate temperature range (up to about 600 °C). Mg2Si is typically produced with powder processing by Spark Plasma Sintering (SPS), partially limiting its widespread diffusion also due to the costly production technique. Here we present a simple route to sinter Mg2Si pressed powders by UHS. The process allowed to obtain dense samples (with relative densities >95%) with 20 s heating up to about 1080 °C followed by a rapid free cooling, a total thermal history below 1 min, and with energy demand at the Wh scale. The high process rate proved its efficacy in preventing grain growth and in avoiding any significant Mg evaporation. A full thermoelectric functional characterization is presented for Mg2Si and Bi-doped Mg2Si, together with a comparison with SPS-produced properties.

Funder

Ministero dello Sviluppo Economico

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3