Sensitive visual detection of intracellular zinc ions based on signal-on polydopamine carbon dots

Author:

Ni Jiatong,Kong Lixiang,Tang Minglu,Song Yan,Zhao Junge,Wang Wenxin,Sun Tiedong,Wang Ying,Wang LeiORCID

Abstract

Abstract The concentration of intracellular zinc ions is a significant clinical parameter for diagnosis. However, it is still a challenge for direct visual detection of zinc ions in cells at single-cell level. To address this issue, herein, water-soluble amino-rich polydopamine carbon quantum dots (PDA-CQDs) were successfully synthesized, with strong blue-green fluorescence as the probes for zinc ions detection in cells. The structure and properties of PDA-CQDs were confirmed by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transformed infrared (FT-IR), UV–visible spectrophotometry (UV–vis), and fluorescence spectroscopy. Importantly, by successfully linking salicylaldehyde (SA) to PDA-CQDs via nucleophilic reaction, the FL quenching and Zn ions induced FL-recovering system was built up, thus offering a signal-on platform for the detection of zinc ions. This PDA-CQDs-SA nanoprobe can be applied for the detection of Zn2+ with a detection limit of 0.09 μM, with good biocompatibility confirmed using cytotoxicity assay. Of significance, the results of fluorescence bioimaging showed that PDA-CQDs-SA is able to detect Zn2+ in single-cell visually, with the detection limit of Zn ions in cells as low as 0.11 μM per cell, which was confirmed using flow cytometry. Therefore, this work offers a potential probe for Zn2+ detection in cells at single-cell level, towards the precise diagnosis of zinc ions related diseases.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities of China

China Postdoctoral Science Foundation

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3