pH-responsive SERS substrates based on AgNP-polyMETAC composites on patterned self-assembled monolayers

Author:

Wang Limin,Wei Peng,Stumpf Steffi,Schubert Ulrich SORCID,Hoeppener StephanieORCID

Abstract

Abstract Patterned silver nanoparticle (NP)-poly[2-(methacryloyloxy)ethyl] trimethyl ammonium chloride (AgNP-polyMETAC) composites were prepared by electrochemical lithography, surface-initiated atom-transfer radical polymerization (SI-ATRP) and NP growth inside the polymer brushes. For this purpose, polymer brushes of poly[2-(methacryloyloxy)ethyl] trimethyl ammonium chloride (polyMETAC) were utilized as strong electrolyte brush system. These were introduced in form of patterned polymer brushes to create pH-responsive surface enhanced Raman scattering SERS substrates. It is well-known that the charges of strong polyelectrolyte chains are usually insensitive to pH changes, hence, rarely strong polyelectrolyte brushes have been utilized so far to study pH-responsive properties of such films. Here pH-insensitive polyMETAC brushes exhibit pH-sensitive properties and can be used as pH-responsive surfaces for SERS applications due to the embedding of AgNPs into the polymer brushes. When increasing the pH, the assembly of the AgNPs transfers from quasi two-dimensional (2D) aggregates, attaching mainly to the polymer surface, into a three-dimensional (3D) assembly, where the particles are penetrating into the brushes. These changes result in significant alterations of the SERS efficiency of the polymer brush composite. At pH 5, the enhancement of the Raman scattering approaches its maximum. The fabricated SERS substrates show a high sensitivity as well as good experimental reliability at different pH values. Moreover, electrochemical lithography was utilized to fabricate patterned SERS substrate, which allows an easy combination of multiple other functionalities in hierarchical structuring steps. In addition, the microstructure is in our studies beneficial because of a simplified and reliable characterization of the polymer brushes at defined sample areas. The introduction of the microstructured brush system is regarded moreover attractive for the development of high-throughput platforms for rapid, automated screening and analysis applications.

Funder

Deutsche Forschungsgemeinschaft

Chinese Scholarship Council

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3