Efficient inverse design and spectrum prediction for nanophotonic devices based on deep recurrent neural networks

Author:

Yan RuoqinORCID,Wang Tao,Jiang XiaoyunORCID,Huang Xing,Wang Lu,Yue Xinzhao,Wang Huimin,Wang Yuandong

Abstract

Abstract The development of nanophotonic devices has presented a revolutionary means to manipulate light at nanoscale. How to efficiently design these devices is an active area of research. Recently, artificial neural networks (ANNs) have displayed powerful ability in the inverse design of nanophotonic devices. However, there is limited research on the inverse design for modeling and learning the sequence characteristics of a spectrum. In this work, we propose a deep learning method based on an improved recurrent neural network to extract the sequence characteristics of a spectrum and achieve inverse design and spectrum prediction. A key feature of the network is that the memory or feedback loops it comprises allow it to effectively recognize time series data. In the context of nanorods hyperbolic metamaterials, we demonstrated the high consistency between the target spectrum and the predicted spectrum, and the network learned the deep physical relationship concerning the structural parameter changes reflected on the spectrum. The effectiveness of our approach is also tested by user-drawn spectra. Moreover, the proposed model is capable of predicting an unknown spectrum based on a known spectrum with only 0.32% mean relative error. The prediction model may be helpful to predict data beyond the detection limit. We propose this versatile method as an effective and accurate alternative to the application of ANNs in nanophotonics, paving way for fast and accurate design of desired devices.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3