Thermally driven single-electron stochastic resonance

Author:

Kasai SeiyaORCID

Abstract

Abstract Stochastic resonance (SR) in a single-electron system is expected to allow information to be correctly carried and processed by single electrons in the presence of thermal fluctuations. Here, we comprehensively study thermally driven single-electron SR. The response of the system to a weak voltage signal is formulated by considering the single-electron tunneling rate, instead of the Kramers’ rate generally used in conventional SR models. The model indicates that the response of the system is maximized at finite temperature and that the peak position is determined by the charging energy. This model quantitatively reproduces the results of a single-electron device simulator. Single-electron SR is also demonstrated using a GaAs-based single-electron system that integrates a quantum dot and a high-sensitivity charge detector. The developed model will contribute to our understanding of single-electron SR and will facilitate accurate prediction, design, and control of single-electron systems.

Funder

Japan Society for the Promotion of Science

Precursory Research for Embryonic Science and Technology

Ministry of Education, Culture, Sports, Science and Technology

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3