Efficient oxygen evolution reaction on RuO2 nanoparticles decorated onion-like carbon (OLC)

Author:

Zhang Liyun,Gan Xingyu,Zhong Xia,Wang Lihua,Feng Guangjing,Wang Lei,Wang Yongzhao,Lv Xiaoxia,Zhu Wancheng,Zhang BingsenORCID

Abstract

Abstract Oxygen evolution reaction (OER) is an important half-cell reaction of the electrical water splitting, for its high overpotential associated with sluggish OER kinetics. Therefore, it is critical to develop highly active and durable electrocatalysts to reduce the overpotential. Herein, ultra-small RuO2 nanoparticles (NPs) supported on onion-like carbon (OLC) and carbon nanotube (CNT) are successfully synthesized by means of wet impregnation combined with annealing treatment, respectively. The microstructure characterization results showed OLC perfect graphitic carbon layer structure, and the RuO2 NPs supported on the OLC possess larger particle size compared with the RuO2 NPs supported on the CNT. Moreover, the electronic structure of Ru in RuO2/OLC was also optimized by the OLC support to be beneficial for the OER. The OER performance of the catalysts were investigated in 1 M KOH solution. The results show RuO2/OLC has a comparable OER activity to the commercial RuO2, but a significantly higher mass activity than the commercial RuO2. When compared with the RuO2/CNT, RuO2/OLC not only exhibits lower overpotential and Tafel slop, but also owns more active sites and higher TOF value, indicating the OLC support improved the OER activity of RuO2/OLC. Moreover, RuO2/OLC showed a superior stability compared with RuO2/CNT, which can be attributed to the excellent electrochemical oxidation-resistance of the OLC.

Funder

Liaoning Revitalization Talents Program

the Yong Talents Invitation Program of Shandong Provincial Colleges and Universities

the Research Fund of SYNL

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3