Abstract
Abstract
The noble metal nanoparticles have attracted attention due to their excellent catalytic performance for CO oxidation at low temperatures. M-CeO2 (M = Pd, Ag, Au) catalysts with different atomic ratios of M/Ce were deposited via solution combustion method. Among them, 3 at% Pd-CeO2, 5 at% Ag-CeO2 and 1 at% Au-CeO2 catalysts have better catalytic performances. Especially, 5 at% Ag-CeO2 catalyst shows better low-temperature CO oxidation performance. The catalytic activity for CO oxidation follows the follows the following sequence: 5 at% Ag-CeO2 (T50 = 69 °C) > 3 at% Pd-CeO2 (T50 = 99 °C) >1 at% Au-CeO2 (T50 = 115 °C). Meanwhile, the catalysts are characterized by means of powder x-ray diffraction, scanning electron microscope, transmission electron microscopy, Raman spectroscopy, x-ray photoelectron spectroscopy, Brunauer–Emmett–Teller and H2-TPR. The characterization results show that the 5 at% Ag-CeO2 catalyst has excellent catalytic activity due to the good dispersion of Ag nanoparticles, the specific surface area of the material, and the reduction catalyst between different valence ions. Moreover, the surface of the catalyst enhances the mutual synergy, effectively promotes the generation of oxygen vacancies, and increases the active oxygen content of the catalyst surface. Finally, the catalytic mechanism of M-CeO2 catalysts is summarized.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献