Abstract
Abstract
In view of the practical application, it is imperative to develop efficient, exercisable, and visible light driven water pollution treatment materials. Herein, a high-efficiency green photocatalytic membrane for water pollution treatment is proposed and fabricated conveniently. Firstly, silver phosphate (Ag3PO4) nanoparticles with controlled morphology were prepared by simple liquid-phase precipitation method, and then a hierarchical structured Ag3PO4@polylactic acid (PLA) composite nanofiber membrane was prepared by electrospinning. Using electrospun PLA nanofiber membrane as a carrier of photocatalysts can significantly improve the dispersion of Ag3PO4 nanoparticles, and increase the contact probability with pollutants and photocatalytic activity. The prepared PLA@Ag3PO4 composite membrane was used to degrade methylene blue (MB) and tetracycline hydrochloride (TC) under visible light irradiation. The results showed that the removal ratio of pollutants on Ag3PO4@PLA composite nanofiber membrane was 94.0% for MB and 82.0% for TC, demonstrating an outstanding photocatalytic activity of composite membrane. Moreover, the PLA nanofiber membrane is a self-supported and biodegradable matrix. After five cycles, it can still achieve 88.0% of the initial photocatalytic degradation rate towards MB, showing excellent recyclability. Thus, this composite nanofiber membrane is a high-efficiency and environmental-friendly visible light driven water pollution treatment material that could be used in real applications.
Funder
National Natural Science Foundation of China
Beijing Scholars Foundation
Engineering Research Center of Nonmetallic Minerals of Zhejiang Province
Science and Technology Project of Beijing Municipal Education Commission
High Levels of Teachers’ Team Construction Special Funds of Beijing Institute of Fashion Technology
Graduate Research Innovation Project of Beijing Institute of Fashion Technology
National Innovation and Entrepreneurship Training Program for College Students
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献