Density functional theory study of Cu-doped BNNT as highly sensitive and selective gas sensor for carbon monoxide

Author:

Fan Guohong,Wang Xiaohua,Tu Xianxian,Xu HongORCID,Wang Qi,Chu Xiangfeng

Abstract

Abstract The adsorption of CO, CO2, CH4, H2, N2 and N2O on armchair (5,5) boron nitride nanotube (BNNT) with and without the doping of transition metals (TM), i.e. Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu or Zn, was investigated using the density functional theory calculation. The results indicate all the considered gases are physically adsorbed by weak interaction on the pure BNNT, revealing that pure BNNT has poor sensing performance for these gases. TM are then doped in the B or N vacancy of BNNT to improve the sensitivity and selectivity. As a result, it was found that the gas adsorption performance of BNNT is obviously enhanced due to the introduction of TM dopant atom. In particularly, according to the results of adsorption energy, Cu doped BNNT (Cu-BNNT) system shows a high selectivity toward CO molecule compared with other metal doped systems. This is further confirmed by the density of state, energy gap and charge transfer analyses. Furthermore, based on the sensor performance analysis, it was found that Cu-BNNT also has favorable desorption characteristics for CO. Therefore, this study concluded that Cu-BNNT can be used as a superior sensor material with high sensitivity, selectivity and favorable recycle time for CO gas.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3