Real-time, single-molecule observation of biomolecular interactions inside nanophotonic zero mode waveguides

Author:

Nemashkalo AORCID,Phipps M E,Hennelly S P,Goodwin P M

Abstract

Abstract Living cells rely on numerous protein-protein, RNA-protein and DNA-protein interactions for processes such as gene expression, biomolecular assembly, protein and RNA degradation. Single-molecule microscopy and spectroscopy are ideal tools for real-time observation and quantification of nucleic acids-protein and protein-protein interactions. One of the major drawbacks of conventional single-molecule imaging methods is low throughput. Methods such as sequencing by synthesis utilizing nanofabrication and single-molecule spectroscopy have brought high throughput into the realm of single-molecule biology. The Pacific Biosciences RS2 sequencer utilizes sequencing by synthesis within nanophotonic zero mode waveguides. A number of years ago this instrument was unlocked by Pacific Biosciences for custom use by researchers allowing them to monitor biological interactions at the single-molecule level with high throughput. In this capability letter we demonstrate the use of the RS2 sequencer for real-time observation of DNA-to-RNA transcription and RNA-protein interactions. We use a relatively complex model–transcription of structured ribosomal RNA from E. coli and interactions of ribosomal RNA with ribosomal proteins. We also show evidence of observation of transcriptional pausing without the application of an external force (as is required for single-molecule pausing studies using optical traps). Overall, in the unlocked, custom mode, the RS2 sequencer can be used to address a wide variety of biological assembly and interaction questions at the single-molecule level with high throughput. This instrument is available for use at the Center for Integrated Nanotechnologies Gateway located at Los Alamos National Laboratory.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3