Enhanced electronic and optical properties of multi-layer arsenic via strain engineering

Author:

Bai LinglingORCID,Gao YifanORCID,Hu PeijuORCID,Zhang Runqing,Wen MinruORCID,Zhang Xin,Wu Fugen,Zheng Zhaoqiang,Dong HuafengORCID,Zhang GangORCID

Abstract

Abstract Solar cell is a kind of devices for renewable and environmentally friendly energy conversion. One of the important things for solar cells is conversion efficiency. While much attention has been drawn to improving efficiency, the role of strain engineering in two-dimensional materials is not yet well-understood. Here, we propose a Pmc21-As monolayer that can be used as a solar cell absorbing material. The bandgap of single-layer Pmc21-As can be tuned from 1.83 to 0 eV by applying tensile strain, while keeping the direct bandgap characteristic. Moreover, it has high light absorption efficiency in the visible and near-infrared regions, which demonstrates a great advantage for improving the conversion efficiency of solar cells. Based on the tunable electronic and optical properties, a novel design strategy for solar cells with a wide absorption range and high absorption efficiency is suggested. Our results not only have direct implication in strain effect on two-dimensional materials, but also give a possible concept for improving the solar cell performance.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3