Abstract
Abstract
In this study, the SnO2 nanoflowers with hierarchical structures sensitized by boron nitride quantum dots (BNQDs) were prepared through a simple hydrothermal method. It was applied for the detection of the BTEX vapors. Further investigation showed that the response value of SnO2 sensitized by different amounts of BNQDs to the BTEX gases have a certain improvement. Especially 10-BNQDs/SnO2 gas sensor exhibited a significant improvement in gas sensing performance and its response values to different BTEX gases was increased up to 2–4 folds compared with the intrinsic SnO2 sensor. In addition, SnO2 nanoflowers based gas sensor showed surprisingly fast response and recovery time for BTEX gases with 1–2 s. That can be attributed to the sensitization of BNQDs and the hierarchical structure of SnO2 nanoflowers, which provided an easy channel for the gas diffusion. An economically viable gas sensor based on BNQDs sensitized SnO2 nanoflowers exhibited a great potential in BTEX gas detection due to the simple synthesis method, environmentally friendly raw materials and excellent gas sensing performance.
Funder
Shandong Provincial Key Laboratory Project of Test Technology
National Natural Science Foundation of China
The Collaborative Education Project of Industry-University Cooperation of the Ministry of Education
Natural Science Foundation of Shandong Province
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献