Abstract
Abstract
Optimizing the width of depletion region is a key consideration in designing high performance photovoltaic photodetectors, as the electron-hole pairs generated outside the depletion region cannot be effectively separated, leading to a negligible contribution to the overall photocurrent. However, currently reported photovoltaic mid-infrared photodetectors based on two-dimensional heterostructures usually adopt a single pn junction configuration, where the depletion region width is not maximally optimized. Here, we demonstrate the construction of a high performance broadband mid-infrared photodetector based on a MoS2/b-AsP/MoS2 npn van der Waals heterostructure. The npn heterojunction can be equivalently represented as two parallel-stacked pn junctions, effectively increasing the thickness of the depletion region. Consequently, the npn device shows a high detectivity of 1.3 × 1010 cmHz1/2W−1 at the mid-infrared wavelength, which is significantly improved compared with its single pn junction counterpart. Moreover, it exhibits a fast response speed of 12 μs, and a broadband detection capability ranging from visible to mid-infrared wavelengths.
Funder
National Key Research and Development Program of China
Natural Science Foundation of Jiangsu Province, the Major Project
Natural Science Foundation of Jiangsu Province
National Natural Science Foundation of China