Abstract
Abstract
A microtubule hollow structure is one type of cytoskeletons which directs a number of important cellular functions. When recapitulating biological events in a cell-free system, artificial frames are often required to execute similar cytoskeletal functions in synthetic systems. Here, I report a prototypical microtubular assembly using a DNA origami nanostructuring method. Through structural design at the molecular level, 32HB (helices bundle)-based DNA origami objects can form micrometers long tubular structures via shape-complementary side patterns engagement and head-to-tail blunt-end stacking. Multiple parameters have been investigated to gain optimized polymerization conditions. Conformational change with an open vs closed hinge is also included, rendering conformational changes for a dynamic assembly. When implementing further improved external regulation with DNA dynamics (DNA strand displacement reactions or using other switchable non-canonical DNA secondary structures) or chemical stimuli, the DNA origami-based microtubule analogue will have great potential to assemble and disassemble on purpose and conduct significantly complicated cytoskeletal tasks in vitro.
Funder
the Taishan scholars program of Shandong province, China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献