Renewable UV-curable polyester methacrylate/cellulose nanocrystals composite resin for wood waterproof coating

Author:

Tian Yuan,Gao Ya,Pan Xueyi,Liu Qiaochu,Wang Jiao,Jin Ming,Li JianboORCID

Abstract

Abstract Low-viscosity UV-curable resins are widely used in industry as they allow for UV curing materials with reduced amounts of reactive diluents to adjust the viscosity. But their mechanical properties and waterproof performance after curing as UV coatings still need to be improved. Here, a series of low-viscosity bio-based UV-curable polyester methacrylates were synthesized through L-lactide (LA) and ε-caprolactone (CL) monomers. The results show that the introduction of star-shaped structure and random copolymerization of LA and CL can effectively reduce the viscosity of the resin to 313 mPa · s and at the same time increase the double bond conversion rate and maintain good mechanical properties. The composite resin was prepared by blending the star-shaped low-viscosity polyester methacrylate resin with cellulose nanocrystals (CNCs), and the microstructure was characterized by XRD and TEM. The curing kinetics, mechanical properties, thermal properties and waterproof properties of the composite resin were further tested. When the mass fraction of CNCs is 2.5 wt%, the water absorption rate of the pine samples coated with UV-cured composite resin is reduced to 17%, which is 65% lower than that of the uncoated samples and 20% lower than that of the samples coated with resin without CNC. This article provides a feasible and effective method for improving the mechanical properties and waterproof performance of low-viscosity UV-curing resins.

Funder

Science and Technology Commission of Shanghai Municipality

Open Foundation of Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3