Insight into the stacking effect on shifted patterns of bilayer phosphorene: a comprehensive first-principles study

Author:

Alhassan Aswad,Yu MingORCID

Abstract

Abstract It is crucial to deeply understand how the interlayer interaction acts on controlling the structural and electronic properties of shifted patterns of bilayer phosphorene. A comprehensive first-principles study on the bilayer phosphorene through relative translation along different directions has revealed that there is a direct correlation between the potential energy surface and the interlayer equilibrium distance. The shorter the interlayer distance, the lower the potential energy surface. The shifted patterns with the most stable state, the metastable state, and the transition state (with energy barrier of ∼1.3 meV/atom) were found associated with the AB, the Aδ, and the TS stacking configurations, respectively. The high energy barriers, on the other hand, are ∼9.3 meV/atom at the AA stacking configuration along the zigzag pathway, ∼5.3 meV/atom at the AB′ stacking configuration along the armchair pathway, and ∼11.2 meV/atom at the AA′ stacking configuration along the diagonal pathway, respectively. The character of electronic bandgap with respect to the shifting shows an anisotropic behavior (with the value of 0.69–1.22 eV). A transition from the indirect to the direct bandgap occurs under the shifting, implying a tunable bandgap by stacking engineering. Furthermore, the orbital hybridization at the interfacial region induces a redistribution of the net charge (∼0.002–0.011 e) associated with the relative shifting between layers, leading to a strong polarization with stripe-like electron depletion near the lone pairs and accumulation in the middle of the interfacial region. It is expected that such interesting findings will provide a fundamental reference to deeply understand and analyze the complex local structural and electronic properties of twisted bilayer phosphorene and will make the shifted patterns of bilayer phosphorene promising for nanoelectronics as versatile shiftronics materials.

Publisher

IOP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3