Mesoscopic 2D molecular self-assembly on an insulator

Author:

Kumar Dhaneesh,Hellerstedt JackORCID,Lowe Benjamin,Schiffrin AgustinORCID

Abstract

Abstract Two-dimensional (2D) nanostructures and nanomaterials offer potential for a wide range of technological applications in electronics, optoelectronics, data storage, sensing and catalysis. On-surface molecular self-assembly – where organic molecules act as building blocks and where surfaces play the role of supporting templates – allows for the bottom-up synthesis of such 2D systems with tuneable atomically precise morphologies and tailored electronic properties. These self-assembly protocols are well established on metal surfaces, but remain limited on electronically gapped substrates (insulators, semiconductors). The latter are useful for preventing electronic coupling (that is, hybridization between molecular assembly and underlying surface) and for avoiding quenching of optical processes, necessary for prospective electronic and optoelectronic applications. In particular, molecular self-assembly on surfaces other than weakly interacting metals can be challenging due to substrate reactivity, defects and inhomogeneities, resulting in intricate energy landscapes that limit the growth kinetically and hampers the synthesis of large-area defect-free 2D systems. Here, we demonstrate the self-assembly of a 2D, atomically thin organic molecular film on a model wide bandgap 2D insulator, single-layer hexagonal boron nitride (hBN) on Cu(111). The molecular film consists of flat, aromatic 9,10-di-cyano-anthracene (DCA) molecules. Our low-temperature scanning tunnelling microscopy and spectroscopy measurements revealed mesoscopic (> 100 x 100 nm^2), topographically homogeneous crystalline molecular domains resulting from flat molecular adsorption and noncovalent in-plane cyano-ring bonding, with electronically decoupled molecular orbitals (MOs) lying within the hBN electronic gap. These MOs exhibit an energy level spatial modulation (~300 meV) that follows the moiré work function variation of hBN on Cu(111). This work paves the way for large-area, atomically precise, highly crystalline 2D organic (and metal-organic) nanomaterials on electronically functional wide bandgap insulators.

Funder

Australian Research Council

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3