Abstract
Abstract
CsPbX3 (X = Cl, Br, I) semiconductor nanocrystals (NCs) have excellent optical and photoelectric properties, and are potential core materials for various photoelectric devices. However, the toxicity of Pb and instability have been the key limitations to application of NCs. Herein, using MnBr2 and MnBr2·4H2O as manganese sources, heavy Mn-doped CsPbBr3 (Mn:CsPbBr3) NCs are synthesized by high-energy ball grinding, which avoids high temperature, a large number of polar solvents and atmosphere protection required in traditional liquid phase methods. However, when MnBr2·4H2O is used as the raw material, infinite solid solution doping can be achieved, and the synthesized Mn:CsPbBr3 NCs show smaller particle size, stronger PL intensity and stability. The reason is that presence of crystal water plays a similar role to wet milling in the ball milling process, and can promote the passivation effect of oleylamine (OAm) on nanocrystal defects and the connection between them. In addition, a simple, easy-operating and beneficial to commercial production method for the preparation of Mn:CsPbBr3 NCs/EVA flexible films is proposed, which can effectively improve the stability of Mn:CsPbBr3 NCs. This study is expected to provide an effective way for the synthesis and stability improvement of CsPbX3 NCs doped with different ions.
Funder
Postgraduate Education Reform and Quality Improvement Project of Henan Province
Program of Henan Province
National Undergraduate Innovation and Entrepreneurship Training Program
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献