Abstract
Abstract
Alternating current electroluminescent (AC-EL) device can be considered as a potential candidate for next generation of multifunctional light-emitting sources. In this work, we present a new design of AC-EL device with inclusion of a silver oxide humidity-sensing layer instead of an insulating buffer layer for humidity detection. The ZnS:Cu, Cl and ZnS:Ag+(Zn,Cd)S:Ag phosphors were used as an emissive layer prepared by screen printing method. The silver oxide (AgO/Ag2O) nanoparticles synthesized via a green method were employed as a humidity sensing layer. The developed AC-EL devices exhibited high response, good productivity, high stability, high repeatability and linear relationship with humidity in range of 10%–90% RH as well as no significant effects with several VOCs/gases such as NH3, CO2, acetone, methanol, toluene and propan at room temperature. The effects of parameters such as excitation frequency, applied voltage, and waveforms on the luminance intensity are discussed. The development of the present AC-EL device offers a simplified architecture to enable sensing functions of the AC-EL device via monitoring of light emission changing.
Funder
Kasetsart University Research and Development Institute
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献