Effects of off-axis translocation through nanopores on the determination of shape and volume estimates for individual particles

Author:

Ying CuifengORCID,Houghtaling JaredORCID,Mayer MichaelORCID

Abstract

Abstract Resistive pulses generated by nanoparticles that translocate through a nanopore contain multi-parametric information about the physical properties of those particles. For example, non-spherical particles sample several different orientations during translocation, producing fluctuations in blockade current that relate to their shape. Due to the heterogenous distribution of electric field from the center to the wall of a nanopore while a particle travels through the pore, its radial position influences the blockade current, thereby affecting the quantification of parameters related to the particle’s characteristics. Here, we investigate the influence of these off-axis effects on parameters estimated by performing finite element simulations of dielectric particles transiting a cylindrical nanopore. We varied the size, ellipsoidal shape, and radial position of individual particles, as well as the size of the nanopore. As expected, nanoparticles translocating near the nanopore wall produce increase current blockades, resulting in overestimates of particle volume. We demonstrated that off-axis effects also influence estimates of shape determined from resistive pulse analyses, sometimes producing a multiple-fold deviation in ellipsoidal length-to-diameter ratio between estimates and reference values. By using a nanopore with the minimum possible diameter that still allows the particle to rotate while translocating, off-axis effects on the determination of both volume and shape can be minimized. In addition, tethering the nanoparticles to a fluid coating on the nanopore wall makes it possible to determine an accurate particle shape with an overestimated volume. This work provides a framework to select optimal ratios of nanopore to nanoparticle size for experiments targeting free translocations.

Funder

Swiss National Science Foundation (SNSF), Grant

Oxford Nanopore Technologies

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3