Interlayer exchange couple based reliable and robust 3-input adder design methodology

Author:

Mattela Venkat,Debroy Sanghamitra,Sivasubramani Santhosh,Acharyya AmitORCID

Abstract

Abstract In this paper, a novel inter-layer exchange coupled (IEC) based 3-input full adder design methodology is proposed and subsequently the architecture has been implemented on the widely accepted micromagnetic OOMMF platform. The impact of temperature on the IEC coupled full-adder design has been analyzed up to Curie temperature. It was observed that even up to Curie temperature the IEC based adder design was able to operate at sub-50 nm as contrast to dipole coupled adder design which failed at 5 K for sub 50 nm. Simulation results obtained from OOMMF micromagnetic simulator shows, the IEC based adder design was at a lower energy state as compared to the dipole coupled adder indicating a more stable system and as the temperature of the design was increased, the total energy increased resulting in reduced stability. Potential explanation for the thermodynamic stability of IEC model lies in its energetically favored architecture, such that the total energy was lower than its dipole coupled counterparts. IEC architecture demonstrates supremacy in reliability and strength enabling NML to march towards beyond CMOS devices.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Reference48 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3