Abstract
Abstract
The efficiency of producing hydroxyl radicals (·OH) from hydrogen peroxide (H2O2) catalyzed by different iron compounds have been explored extensively. Exclusively, ferrocenecarboxylic acid (FCA) showed the best catalyzed activity for ·OH generation. Then, we designed and prepared near-infrared (NIR) light-responsive and folate-targeted nanoplatform, which co-delivered FCA, cisplatin and indocyanine green (ICG) for improving antitumor therapy through amplified oxidative stress. The noteworthy observation is that under the irradiation of NIR light, the lecithin structure could able to depolymerize through the photothermal conversion mechanism of encapsulated dye ICG, which has achieved an intelligent release of drugs. In addition, the released cisplatin is not only fully effective to damage the DNA of cancer cells but it is able to induce the production of intracellular H2O2, which could further be catalyzed by FCA to generate toxic ·OH for oxidative damage via Fenton and Haber–Weiss reaction. This original strategy may provide an efficient way for improved chemotherapy via amplified oxidative stress.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献