Spin-polarization control of in-plane scattering in arrays of asymmetric U-shaped nanoantennas

Author:

Sadeghi Seyed MORCID,Roberts Dustin T,Gutha Rithvik R

Abstract

Abstract We study projection-enabled enhancement of asymmetric optical responses of plasmonic metasurfaces for photon-spin control of their far field scattering. Such a process occurs by detecting the light scattered by arrays of asymmetric U-shaped nanoantennas along their planes (in-plane scattering). The nanoantennas are considered to have relatively long bases and two unequal arms. Therefore, as their view angles along the planes of the arrays are changed, they offer an extensive range of shape and size projections, providing a wide control over the contributions of plasmonic near fields and multipolar resonances to the far field scattering of the arrays. We show that this increases the degree of the asymmetric spin-polarization responses of the arrays to circularly polarized light, offering a large amount of chirality. In particular, our results show the in-plane scattering of such metasurfaces can support opposite handedness, offering the possibility of photon spin-dependent directional control of energy routing.

Funder

National Science Foundation

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Reference53 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3