Degradation of cotton stalk lignin by carbon dots loaded copper oxide synergistic emulsion system

Author:

Dong Han,Ding Lijie,Wu Lei,Mamatjan YimitORCID

Abstract

Abstract Based on the realization of efficient utilization of cotton stalk lignin, the degradation of cotton stalk lignin by a CDs/CuO synergistic emulsion system was investigated. Copper oxide (CuO) nanoparticles with monoclinic crystal structure were prepared and carbon dots (CDs) synthesized by microwave method was combined with CuO. Under visible light, water and n-butanol were used to construct a water–oil (W/O) emulsion reaction system to achieved depolymerisation of lignin into small molecule compounds. The involvement of hydrogen peroxide (H2O2) makes the degradation of lignin in this system even more effective. The final high value-added monophenolic compound of 57.70 mg g−1 was obtained, among which the most abundant were six monophenolic compounds such as vanillin, eugenol and vinyl guaiacol and so on. The results of GC-MS and FTIR characterization indicated that H-type monomers were the main products of lignin degradation in this system. The process conditions for lignin hydrogenolysis in this system were optimized and the best ratio of CDs/CuO was obtained by product analysis. There were characterized by SEM, TEM, XRD, XPS, FTIR, and US–vis. The results show that CDs/CuO aggregates into flower clusters, in which CDs are uniformly distributed on the surface of rhomboidal CuO monoliths. The analysis shows that the doping of CDs improves the absorption efficiency of CuO in the visible region, while reducing the complexation of CuO photogenerated electrons and holes, which achieves the purpose of improved photocatalytic activity of CuO.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3