Experimental investigation of performance tailoring of the multifunctional sensor using transition metal (Fe) doped ZnO nanorods synthesized via a facile solution-based method

Author:

Ramany KiruthikaORCID,Shankararajan Radha,Savarimuthu Kirubaveni,Venkatachalapathi Shyamala,Gunasekaran Iyappan,Rajamanickam Govindaraj,Perumalsamy Ramasamy

Abstract

Abstract A systematic interpretation of the undoped and Fe doped ZnO based multifunctional sensor developed employing economic and facile low-temperature hydrothermal method is reported. The tailoring of the performance improvement of the sensor was deliberately carried out using varied concentration (1, 3 and 5 Wt%) of Fe dopant in ZnO nanorods. The structural and morphological analysis reveal the undisturbed ZnO hexagonal wurtzite structure formation and 1D morphology grown even when the dopant is added. The optical property study evidences a decreased bandgap (3.10 eV) and decreased defects of 5 Wt% of Fe dopant in ZnO nanorods based sensor compared to the undoped one. The electrical process transpiring in the tailored multifunctional sensor is investigated using photoconductivity and impedance analysis elucidates proper construction of p–n junction between the piezoelectric n-type active layer (undoped and Fe doped ZnO nanorods) and p-type PEDOT:PSS ((poly(3,4-ethylene dioxythiophene) polystyrene sulfonate)) and reduced internal resistance of 5 Wt% of Fe dopant in ZnO nanorods based sensor (131.97 Ω) respectively. The investigation on the experimental piezoelectric acceleration and gas sensing validation and the performance measurement were interpreted using test systems. A revamped output voltage of 3.71 V for 1 g input acceleration and a comprehensive sensitivity of 7.17 V g−1 was achieved for the 5 Wt% of Fe dopant in ZnO nanorods based sensor sensor. Similarly, an upgraded sensitivity of 2.04 and 6.75 for 5 Wt% of Fe dopant in ZnO nanorods based sensor was obtained when exposed to 10 ppm of target gases namely CO and CH4 respectively at room temperature. Appending to this, acceptable stability of the sensor for both the sensing (acceleration and gas) was also attained manifesting its prospective application in multifunctional based systems like sewage systems.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3