Investigation into surface composition of nitrogen-doped niobium for superconducting RF cavities

Author:

Yang Li,Liu Baiqi,Ye ZongbiaoORCID,Yang Chi,Wang Zhijun,Chen Bo,Chen Jianjun,Sha PengORCID,Dong Chao,Zhu Jie,Li Zhiling,Yan Rong,Ding RuiORCID,Zhang Kun,Gou Fujun

Abstract

Abstract Systematic analysis of the surface morphology, crystalline phase, chemical composition and elemental distribution along depth for nitrogen-doped niobium was carried out using different methods of characterization, including Scanning Electron Microscopy (SEM), Atomic-Force Microscopy (AFM), Grazing Incidence X-ray Diffraction (GIXRD), Rutherford Backscattering Spectrometry (RBS) and layer-by-layer X-ray Photoelectron Spectroscopy (XPS) analysis. The results showed that, after nitrogen doping, the surface was covered by densely distributed trigonal precipitates with an average crystallite size of 32 ± 8 nm, in line with the calculation result (29.9 nm) of nitrogen-enriched β-Nb2N from GIXRD, demonstrating the phase composition of trigonal precipitates. The depth analysis through RBS and XPS indicated that β-Nb2N was dominant in the topmost 9.7 nm and extended to a depth of 575 nm, with gradually decreased content. In addition, the successive change along depth in the naturally oxidized states of niobium after nitrogen doping, was revealed. It was interesting to find that the oxygen diffusion depth could be moderately enhanced by the nitridation process. These results established the near-surface phase composition of nitrided niobium, which is of great significance in evaluating the effect of nitrogen doping and further understanding the Q improvement of the superconducting radio frequency cavities.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Sichuan Science and Technology Program

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3