Strain insensitive flexible photodetector based on molybdenum ditelluride/molybdenum disulfide heterostructure

Author:

Zhu Xuesong,Wu Dahao,Liang Shengzhi,Liu JingORCID

Abstract

Abstract Flexible electronic and optoelectronic devices are highly desirable for various emerging applications, such as human-computer interfaces, wearable medical electronics, flexible display, etc. Layered two-dimensional (2D) material is one of the most promising types of materials to develop flexible devices due to its atomically thin thickness, which gives it excellent flexibility and mechanical endurance. However, the 2D material devices fabricated on flexible substrate inevitably suffer from mechanical deformation, which can severely affect device performances, resulting in function degradation and even failure. In this work, we propose a strain insensitive flexible photodetector based on MoS2/MoTe2 heterostructure on polyimide substrate, which provides a feasible approach to cancel unpredicted impacts of strain on the device performances. Specifically, the MoS2/MoTe2 heterostructure is deposited with 4 electrodes to form three independent devices of MoS2 FET, MoTe2 FET and MoS2/MoTe2 heterojunction. Among them, the MoS2/MoTe2 heterojunction is used as the photodetector, while the MoS2 FET is used as a strain gauge to calibrate the photo detection result. Such configuration is enabled by the Schottky barrier formed between the electrodes and the MoS2 flake, which leads to obvious and negligible photo response of MoS2/MoTe2 heterojunction and MoS2 FET, respectively, under low source-drain bias (ex. 10 mV). The experimental results show that the proposed mechanism can not only calibrate the photo response to cancel strain effect, but also successfully differentiate the wavelength (with fixed power) or power (with fixed wavelength) of light illumination.

Funder

111 Project

National Key R&D Program

National Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Strain-insensitive bioelectronics;Chemical Engineering Journal;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3