Abstract
Abstract
We present results of atomic-force-microscopy-based friction measurements on Re-doped molybdenum disulfide (MoS2). In stark contrast to the widespread observation of decreasing friction with increasing number of layers on two-dimensional (2D) materials, friction on Re-doped MoS2 exhibits an anomalous, i.e. inverse, dependence on the number of layers. Raman spectroscopy measurements combined with ab initio calculations reveal signatures of Re intercalation. Calculations suggest an increase in out-of-plane stiffness that inversely correlates with the number of layers as the physical mechanism behind this remarkable observation, revealing a distinctive regime of puckering for 2D materials.
Funder
National Science Foundation
National Aeronautics and Space Administration
U.S. Department of Energy
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献